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Abstract
The exciton states in deformed single-walled carbon nanotubes (SWNTs), under
two kinds of strain, i.e., uniaxial and torsional, are theoretically studied in
the Su–Schrieffer–Heeger (SSH) model, supplemented by long-range Coulomb
interactions. It is found that for semiconducting zigzag tubes, the exciton
binding energy Eb and the (quasi-)continuum edge Ec are very sensitive to
the uniaxial strain, but not to the torsional one, showing two different kinds
of variation behaviour of Eb with increasing uniaxial strain, of which one
decreases monotonically, and the other first increases and then decreases.
Additionally, the excitons in torsionally distorted armchair tubes and uniaxially
strained metallic zigzag tubes have also been studied, showing increased Eb and
Ec with increasing strain.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Since the discovery [1] of carbon nanotubes (CNTs) in 1991 by Iijima, there has been much
interest in their physical and chemical properties, especially their optical properties, which are
of great importance and practical interest because from them we can get some information of
the CNTs’ geometrical and electrical structures. Their optical absorption and emission spectra
have been studied experimentally and theoretically by a number of groups [2–7]. Recently, a
consensus [8, 9] emerged that the optical absorptions in semiconducting SWNTs are greatly
affected by the excitons, which play an important role in one-dimensional (1D) systems, such
as semiconductor quantum wires [10] and conjugated polymers [11, 12].

The exciton effect on the optical properties of semiconducting CNTs has been theoretically
studied by different methods, such as the tight-binding method, variational calculations [13–15]
and the ab initio solution of the Bethe–Salpeter equation (BSE) [7, 16], finding that the exciton
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binding energy Eb varies inversely with the diameters of the CNTs. Experimentally, there
exists growing evidence [17, 18] that the absorption and photoluminescence (PL) peaks in the
CNTs are excitonic in character. Their Eb has been measured [19] from two-photon excitation
spectroscopy, showing the same dependence on the tube diameter and chiral angle as predicted
by theoretical calculations.

However, the SWNTs are usually supported on a solid substrate in experiments, causing
various mechanical deformations. An applied uniaxial or torsional strain can also induce
SWNT deformations, changing their electronic structures and corresponding transport and
optical properties [20–29]. For example, the energy level degeneracy may be destroyed by
the symmetry breaking induced by the deformations, and the σ–π mixing could be enhanced
by the increased curvature. A metal–semiconductor transition of the SWNTs could be induced
by the deformation. Because of the fundamental importance of the deformed CNTs and their
promising potential applications in future nano-electromechanical devises, there have been a
lot of theoretical and experimental researches on the electronic, transport and optical properties
of the deformed CNTs [20–29]. Several theoretical studies on the π -electronic structures of
deformed SWNTs under two kinds of strain, i.e., the uniaxial and torsional [28, 29], have shown
that the band structures of the deformed SWNTs are determined by their chiral symmetries and
the kind of strain; for example, their band gap varies with increasing strain, depending on their
chiral angles. Their optical properties [20] are also very sensitive to the kind of strain and the
CNT geometry. The metal–semiconductor transition of torsional metallic SWNTs, as predicted
theoretically, has been observed experimentally [30].

However, up to now, there has been no discussion on the exciton effect in the deformed
CNTs. So, it is very interesting to know the influence of applied strains on the exciton
binding energy Eb and its (quasi-)continuum edge Ec of semiconducting CNTs, which could
find applications in future nano-optical and nano-optical–mechanical coupling devices. In this
work, we have studied the excitons in armchair and zigzag SWNTs under uniaxial and torsional
strains. It is found that the Eb and Ec of semiconducting zigzag tubes depend sensitively on
the kind of strain and their chiral angles.

The paper is organized as follows. The model and calculation method used in this paper
are discussed in section 2. The obtained results and discussions are given in section 3. The
conclusions are presented in section 4.

2. Model and method

The Hamiltonian of deformed SWNTs studied here is the SSH tight-binding one:

H =
∑

〈i, j〉,s
ti j C

†
i,sC j,s + H.c. (1)

where C†
i,s(C j,s) is the creation (annihilation) operator of an electron at site i( j) with spin

s. The nearest-neighbour hopping parameter ti, j (< 0) depends on the bond length, which is
assumed to be ti, j = t0(r0/ri j)

2 with ri j the deformed bond length between site i and j [28].
r0 and t0 are the bond length and hopping parameter of the SWNTs without deformations,
respectively. Here, t0 is chosen to be −2.0 eV, which has been used successfully in [31]. The
uniaxial and torsional strains will cause the following changes of the bond vectors:

ri t → (1 + εt), and, ric → (1 + εc) (tensile), (2)

ric → ric + tan(γ )ri t (torsion), (3)

where i = 1, 2, 3 and rip is the p component of the �ri (p = c, t. Here, t and c denote the tube
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axis and circumference direction, respectively). εt and εc represent the uniaxial strain along t̂
and ĉ, respectively. γ is the shear strain.

We perturb the Hamiltonian H0 with the electron–electron Coulomb interactions H1, which
are described by the following model:

He−e = U
∑

i

ni,↑ni,↓ + 1
2

∑

i, j

Vi j(ni − 1)(n j − 1). (4)

Here, ni = ∑
s C†

i,sCi,s is the total number of π electrons on site i . The parameters U and Vi j

are the on-site and inter-site Coulomb interactions. In the actual calculations, the long-range
Vi j is taken to be the standard Ohno parameterization [32, 33], i.e.,

Vi j = U

κ
√

1 + 0.6117r 2
i j

. (5)

Here, ri j is measured in units of Å, and κ is a screening parameter. We have made calculations
of deformed semiconducting zigzag tubes for U

|t0| = 1.9, 2.5, 2.9, 3.33, 4.0 and κ = 1, 2,
obtaining very similar qualitative results in all the cases. So, in this paper, we report only the
calculation results for U

|t0| = 4.0 and κ = 2, which have also been used in [31]. However, for
the deformed metallic tubes, the screening parameter should be larger [34], and we increase the
screening parameter up to 5.

According to the standard exciton theory [35], we choose the single electron states of H0

as the basis and construct a set of single electron–hole (e–h) pair excitation states from the
ground state |g〉:

|kc, kv〉 = 1√
2
(C†

kc↑Ckv↑ ± C†
kc↓Ckv↓)|g〉 (6)

where ‘+’ denotes the spin singlet and ‘−’ the spin triplet state, and kc and kv are wavenumbers
along the tube axis in the conduction and valence band states, respectively. Then the matrix of
the Hamiltonian H = H0 + H1 within the single e–h excitation subspace is calculated and
diagonalized, which has to be carried out numerically in actual calculations for a finite-length
CNT. It is known that the wavenumber k⊥ in the direction of the circumference is quantized
as k⊥ = 2πq/cha0 (q = 0, 1, . . . , nc − 1). Here, nc is the number of hexagons in a 1D
unit cell of the tube. a0 = | �a1| = | �a2| = 2.46 Å is the length of unit vector in graphite.
ch = √

n2 + nm + m2 is the circumference length of the (n,m) tube in units of a0. If one takes
into account the effect of finite tube length, the axial wavenumber of kc(kv) is also quantized as
kc(v) = 2π j/LT0 ( j is an integer, − L

2 � j < L
2 ). Here, L is the tube length in units of T0, the

length of the translational unit cell of the 1D infinite SWNT. We now can assume kc = k + K
and kv = k − K , where k is the relative momentum of the e–h pair and K is the momentum of
the mass centre of the e–h pair. Thus, the state |kc, kv〉 can be represented by the state |k, K 〉. In
the single e–h pair excitation states |k, K 〉, the matrix elements of the excitation Hamiltonian of
(H − E0) in the spin singlet (δs = 1) and triplet (δs = 0) states can be written as [11, 12, 36]

〈k ′, K ′|(H − E0)|k, K 〉 = δK ′,K {δk′,k[ε̃c(k + K )− ε̃v(k − K )]
+ 2δsWx (k, k ′, K )− Wc(k, k ′, K )}. (7)

Here, E0 = 〈g|H |g〉 represents the expectation value of H in the ground state |g〉 =∏
kv

C†
kv,↑C†

kv,↓|0〉 with |0〉 the vacuum state without electrons. ε̃c and ε̃v are the energies of
one-electron states in the conduction and the valence bands, respectively, which include the
first-order energy corrections concerning the Coulomb interactions. Their explicit forms are
given as follows.

ε̃c = εc +�εc, ε̃v = −ε̃c, (8)
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εc =
{

t2
1 + t2

2 + t2
3 + 2t1t2 cos

(
πq

n + 2m

c2
h

−
√

3

2

n

ch
kc(1 + εt)a0 − πq

√
3 tan(γ )

1 + εc

n

c2
h

)

+ 2t1t3 cos

(
πq

2n + m

c2
h

+
√

3

2

m

ch
kc(1 + εt)a0 + πq

√
3 tan(γ )

1 + εc

m

c2
h

)

+ 2t2t3 cos

(
πq

n − m

c2
h

+
√

3

2

n + m

ch
kc(1 + εt)a0 + πq

√
3 tan(γ )

1 + εc

n + m

c2
h

)} 1
2

(9)

�εkc = 1

L Nc

∑

p

∑

gh

ei( �p−�k− �K )·�r × [V12(g, h)ξk+K ξ
∗
pξ

∗
pξk+K + V21(g, h)ξ∗

k+K ξpξpξ
∗
k+K ]. (10)

Here, Vi j denotes the electron–electron interaction between the ith carbon atom in the graphite
unit cell (g, h) and the jth one in the graphite unit cell (0, 0). ξk = (h0/2|h0|) 1

2 , and the
expression of h0 is given as follows:

h0 = t1 + t2e
−i(πq n+2m

c2
h

−
√

3n
2ch

kc(1+εt)a0−πq
√

3 tan γ
1+εc

n
c2
h
) + t3e

−i(πq 2n+m
c2
h

+
√

3m
2ch

kc(1+εt)a0+πq
√

3 tan γ
1+εc

m
c2
h
)
. (11)

In equation (7), the Coulomb part Wc and the exchange part Wx are given as follows:

Wc = 1

L Nc

∑

gh

ei(�k−�k′)·�r × [V12(g, h)ξk′+K ξ
∗
k+K ξk′−K ξ

∗
k−K + V11(g, h)ξk′+K ξ

∗
k+K ξ

∗
k′−K ξk−K

+ V21(g, h)ξ∗
k′+K ξk+K ξ

∗
k′−K ξk−K + V22(g, h)ξ∗

k′+K ξk+K ξk′−K ξ
∗
k−K ] (12)

Wx = 1

L Nc

∑

gh

{V11(g, h)ξk′+K ξ
∗
k+K ξ

∗
k′−K ξk−K + V22(g, h)ξ∗

k′+K ξk+K ξk′−K ξ
∗
k−K

− [V12(g, h)ξk′+K ξk+K ξ
∗
k′−K ξ

∗
k−K + V21(g, h)ξ∗

k′+K ξ
∗
k+K ξk′−K ξk−K ]}. (13)

If the system has spatial inversion symmetry, the exciton space can be divided into two
subspaces: antisymmetric Bu states |k; +K 〉[≡ (|k, K 〉 + |–k, K 〉)/√2] and symmetric Ag

states |k; −K 〉[≡ (|k, K 〉 − |–k, K 〉)/√2] [11, 12]. Considering the symmetry, the matrix
elements of the excitation Hamiltonian in both Bu and Ag subspaces can be written in the
following form:

〈k ′; ±, K |(H − E0)|k; ±, K 〉 = δk′ ,k[ε̃c(k + K )− ε̃v(k − K )]
+ 2δsWx (k

′, k; ±, K )− Wc(k
′, k; ±, K ). (14)

Here,

Wx (k
′, k; +, K ) = 2Wx(k

′, k; K ) (15)

Wc(k
′, k; +, K ) = Wc(k

′, k; K )+ Wc(k
′,−k; K ) (16)

Wx (k
′, k; −, K ) = 0 (17)

Wc(k
′, k; −, K ) = Wc(k

′, k; K )− Wc(k
′,−k; K ). (18)

It is clearly seen from the above equations that all the Ag states, including the singlet and
triplet states, are degenerate.

3. Results and discussions

Now, we first discuss the exciton effect in semiconducting zigzag tubes under uniaxial and
torsional strains, and then in torsional armchair tubes and uniaxially strained metallic zigzag
ones, both of which can be transformed into semiconducting SWNTs. The tube length is taken
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Figure 1. Calculated excitation energy levels of the (11, 0) tube at K = 0, L = 180 for the first
subbands nearest the Fermi level versus uniaxial strain in different states: (a) 1Bu state, (b) 3Bu

state, and (c) degenerate Ag state. (d) Variation of Eb in the 3Bu state with increasing uniaxial
strain. The dashed lines denote Ec.

to be 180T0, and the periodical boundary condition along the tube axis is used to avoid the
finite-length effect. The band index q in our calculations is limited to the bands nearest to the
Fermi level for the first subband transitions, associated with the transitions between the highest
valence subband and the lowest conduction subband in semiconducting SWNTs.

3.1. Semiconducting zigzag tubes

According to [28], the band gap of semiconducting zigzag tubes is very sensitive to uniaxial
strain but has only a small change under torsional strain. In the case of uniaxial strain, the band
gap of zigzag tubes depends on the value of (n − m) mod 3. When the value equals −1, the
band gap will decrease with increasing strain, while for the value of 1, it will first increase and
then decrease with increasing strain. Here, we take only (10, 0) and (11, 0) tubes as an example,
both of which have different values of (n−m)mod 3. As is well known, uniaxial strain does not
destroy the inversion symmetry of zigzag tubes [37], so we can still calculate their Eb and Ec

in the Bu and Ag subspaces under the applied uniaxial strain. Note that Ec equals the minimum
of the renormalized one-electron excitation energy, ε̃c(k + K ) − ε̃v(k − K ). In general, the
states below and above Ec can be defined as exciton states and unbound electron–hole states,
respectively, although the distinction between them may not be absolutely strict, especially near
Ec, because of the finiteness of the system.

The excitation energies of the (11, 0) tube in the 1Bu, 3Bu and Ag states, varying with
increase of the uniaxial strain, are given in figure 1; the 3Bu state is the lowest exciton energy
state. At εt = 0, the Eb of the (11, 0) tube in the 3Bu state is found to be about 0.419 eV, which
is in excellent agreement with the earlier studies [17, 31, 32]. From figures 1(a)–(c), it is seen
clearly that Ec decreases with increasing strain, which is consistent with the change of band

5
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Figure 2. Calculated excitation energy levels of the (10, 0) tube at K = 0, L = 180 for the first
subbands nearest the Fermi level versus uniaxial strain in different states: (a) 1Bu state, (b) 3Bu

state, and (c) degenerate Ag state. (d) Variation of Eb in the 3Bu state with increasing uniaxial
strain. The dashed lines denote Ec.

gap. The variation of Eb in the 3Bu state of the (11, 0) tube with increase of the uniaxial strain
is given in figure 1(d), also showing a decrease with increasing strain. The variation slope of
dEb/dεt is found to be almost a constant, which is about 2.30 eV in the 3Bu state. Of course,
Eb in the 1Bu and Ag states can also be obtained; its variation with increasing strain is similar
to that in the 3Bu state. However, dEb/dεt in the 1Bu and Ag states is, respectively, slightly
smaller and three times smaller than that in the 3Bu state. From the variation slopes of dEb/dεt,
we can conclude that the uniaxial strain has the greatest influence on Eb in the 3Bu state.

The same numerical calculation has been made for the (10, 0) tube in both Bu and Ag

subspaces, and the results obtained are displayed in figure 2. In contrast to figure 1, Ec now
first increases and then decreases with increase of the strain, which is caused by the change of
band index q corresponding to the lowest excitation energies, and could be understood by the
change of band gap. For the (10, 0) tube, the reversal point of the variation slope, dEb/dεt, lies
between εt = 0.06 and 0.07. The variation of Eb with increase of strain in the 3Bu state is given
in figure 2(d), showing first an increase and then a decrease, but also the existence of a jump
of ∼0.03 eV at the reversal point, which is completely different from that shown in figure 1(d)
for the (11, 0) tube. That is because both (11, 0) and (10, 0) semiconducting zigzag tubes have
different values of (n − m)mod 3, among which the former has a −1 value of (n − m) mod 3,
but the latter has +1. The same variation behaviour with increasing strain for Eb and the slope
dEb/dεt can be obtained in both 1Bu and Ag states.

It is known that the band gap of semiconducting zigzag tubes is insensitive to torsional
strain. From our calculations, we get the same conclusion that the torsional strain leads to a
small change of their Ec and Eb. Due to the symmetry breaking under the torsional strain [37],
the calculation has to be done for the singlet and triplet states.

6
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Figure 3. The exciton wavefunction of the (11, 0) tube in the first 1Bu state under a uniaxial strain
(εt = 0.01). The colour (greyscale) plot represents the probability of finding a hole for the fixed
electron position at the origin of the coordinate system. Here, z represents the tube axis direction,
and c the circumference direction.

What is the effect of the applied strains on the exciton size in the SWNTs? Here, we
have only taken the first 1Bu exciton state of the (11, 0) tube as an example, and plotted in
figure 3 its exciton wavefunction ψ(xe, xh) under a uniaxial strain εt = 0.01 by fixing the
electron position at the origin of the coordinate system. From figure 3, it is clearly seen that the
exciton is localized in the tube axis direction, but is delocalized along the tube circumference,
indicating that this 1Bu state is a bound exciton state, which is in an agreement with [8] and [14].
The influence of increasing strain on the exciton wavefunction of the first 1Bu state is shown in
figure 4(a), in which the wavefunction has been averaged over the circumference direction. It
is seen from figure 4(a) that with increasing strain εt, the wavefunction becomes less localized
along the tube axis. The exciton size d along the tube axis can be obtained from the formula
d = √〈(xe − xh)2〉, from which the exciton size varying with increasing strain can be obtained;
it is given in figure 4(b), also showing clearly the delocalization effect caused by the applied
uniaxial strain. For example, the exciton size is 25.2 Å in the case of no applied strain, but
when εt increases to 0.07, the size increases about one and half times, reaching 37.4 Å.

3.2. Torsionally distorted armchair tube and uniaxially strained metallic zigzag tube

A metal–semiconductor transition may occur for an armchair tube under torsional strain and
a metallic zigzag one under uniaxial strain. Hence, these two kinds of metallic tube could
be changed into semiconducting ones, and a band gap be opened by the strains. So, it is of
great interest to discuss the exciton effect in these deformed metallic carbon nanotubes. As
an example, we have studied the exciton effect in the torsional armchair (10, 10) tube and the
uniaxial metallic zigzag (9, 0) tube. The results obtained are given, respectively, in figures 5
and 6. It is found from them that Ec and Eb increase with increasing strain in these two cases,
which is consistent with their band gap variations. However, it is known by comparison that
the Eb of these two tubes under applied strain are much smaller than those of the deformed
semiconducting SWNTs, showing a much different effect of the deformations on the excitons
in semiconducting and metallic SWNTs.

7
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Figure 4. (a) Exciton wavefunction in the first 1Bu state of the (11, 0) tube under different uniaxial
strains, averaged over the circumference direction. (b) The exciton size in the first 1Bu state of the
(11, 0) tube versus the uniaxial strain εt.

(a) (b) (c)

Figure 5. Calculated excitation energy levels and Eb of the armchair (10, 10) tube at K = 0,
L = 180 for the bands nearest to the Fermi level versus the torsional strain γ in different states:
(a) singlet state, (b) triplet state. (c) Variation of Eb in the triplet state with γ . The dashed lines
denote Ec.

Using the same method, we can also study their exciton wavefunctions under applied
strain. Here, we take the first 1Bu exciton state of the zigzag (9, 0) tube as an example, and show
in figure 7 the strain influence on its exciton wavefunction averaged over the circumference
direction. It is seen from figure 7 that, in this case, the strain influence on the exciton
wavefunction of the zigzag (9, 0) tube is different from that in the semiconducting zigzag (11,
0) tube, shown in figure 4(a). With increasing strain, the exciton wavefunction now becomes
increasingly localized in the tube axis because its band gap now increases with increasing
strain.

8
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Figure 6. Calculated excitation energy levels of the (9, 0) tube at K = 0, L = 180 for the first
subbands nearest the Fermi level versus uniaxial strain in different states: (a) 1Bu state, (b) 3Bu

state, and (c) degenerate Ag state. (d) Variation of Eb in the 3Bu state with increasing uniaxial
strain. The dashed lines denote Ec.
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Figure 7. Exciton wavefunction in the first 1Bu state of a metallic (9, 0) tube under different uniaxial
strains, averaged over the circumference direction.

4. Conclusions

In summary, we have used the simple SSH model Hamiltonian supplemented by long-range
Coulomb interactions to study the exciton effect in deformed SWNTs under applied uniaxial
and torsional strains. Values of Ec and Eb have first been calculated for semiconducting (10, 0)
and (11, 0) SWNTs under uniaxial and torsional strains, showing that all of them are sensitive
to uniaxial strain, but not to torsional strain. As the uniaxial strain increases, the Ec, Eb change
in two different ways: (a) both of them decrease for type I tubes with their values of (n − m)

9
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mod 3 being −1; (b) both of them first increase and then decrease at a critical uniaxial strain
value for type II tubes with their values of (n − m)mod 3 being 1. The excitons in the torsional
armchair (10, 10) tube and uniaxially strained metallic zigzag (9, 0) tube have also been studied,
showing that their Ec and Eb increase with increasing strain.
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